TA12

series

Product Segments

- Care Motion - Industrial Motion

TiMOTION's TA12 series linear actuator is designed primarily for high-load patient lifts and bariatric beds. These sensitive applications require a linear actuator whose design is focused on safety, reliability and effortless operation. A significant feature of the TA12 is the manual release function that allows for lowering of the patient in the event of an emergency or electrical power outage. The TA12 linear actuator has obtained the UL/EN60601-1 certification and is available with an optional IP54 or 66 rating.

General Features

Voltage of motor
Maximum load
Maximum load
Maximum speed at full load

Minimum installation dimension
Color
IP rating
Certificate
Operational temperature range
Option

12 V DC, or 24 V DC
12,000N in push
$6,000 \mathrm{~N}$ in pull
$32.3 \mathrm{~mm} / \mathrm{s}$ (with $1,500 \mathrm{~N}$ in a push or pull condition)
Stroke +210 mm
Black or grey
Up to IP66W
RoHS, EN60601-1 and IEC60601-1 compliant $+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Safety nut, Hall/Reed/POT sensor(s), manual release

Load and Speed							
CODE	Load (N) Push	Pull	Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
				No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (3800RPM, Duty Cycle 10\%)							
B	12000	6000	12000	2.0	10.0	7.2	4.0
C	7000	6000	7000	2.5	9.0	14.4	8.1
D	4000	4000	4000	2.5	9.5	28.7	16.2
E	2500	2500	2500	2.5	8.5	43.1	24.3
F	1500	1500	1500	2.5	7.5	57.3	32.3
Motor Speed (3000RPM, Duty Cycle 10\%)							
G	10000	6000	10000	2.0	10.0	11.0	5.2
H	12000	6000	12000	2.0	7.5	5.5	3.1
J	7000	6000	7000	2.0	7.5	11.3	6.0
K	4000	4000	4000	2.0	7.0	22.7	12.7
L	2500	2500	2500	2.0	6.5	34.0	19.1
M	1500	1500	1500	2.0	6.0	45.3	25.5

Note

1 With a 12 V motor, the current is approximately twice the current measured in 24 V ; speed will be similar for both voltages.
2 Self locking force: Tested average value when working with TiMOTION control system in push direction.
3 Current and speed: Tested avearge value when stretching in push direction.
4 Standard stroke: min needs $\geq 20 \mathrm{~mm}$, Max refer to below table.

Load and Speed Code	Max Stroke (mm)
B, H	450
G	750
C, J	900
D, K	1000
E, L	1200
F, M	1500

5 With POT signal the Max sroke.

Load and Speed Code	Max Stroke (mm)
G	335
B, H	335
C, J	685
D, K	685
E, L	1030
F, M	1400

Speed vs．Thrust

Current vs．Thrust

Note

1 The performance data in the curve charts shows theoretical value

Speed vs．Thrust

Current vs．Thrust

Note

The performance data in the curve charts shows theoretical value

Drawing

Standard Dimensions
(mm)

Retracted length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front attachment	Normal	Patient Hoist
1,2	+220	-
6,7, C (for load<8000N)	+210	-
F	-	+267
B. Stroke $(\mathbf{m m})$	Normal	Patient Hoist
$20 \sim 300$	-	-
$301 \sim 350$	+10	+10
$351 \sim 400$	+20	+20

For stroke over $400 \mathrm{~mm},+10 \mathrm{~mm}$ for each incremental 50 mm stroke

C. Special Functions for Spindle Sub-Assembly	Normal	Patient Hoist
0	-	-
1	-	-
2	+15	-
3	+15	-
6	-	+15

Wire Definitions

CODE*	Pin					
	1	2	3	4	6	
	(green)		(red)	O (white)		(black)

Note

* See ordering key - functions for limit switches

TA12

Voltage	$5=24 \mathrm{~V}$, thermal protector	$6=12 \mathrm{~V}$, thermal protector
Load and Speed	See page 2	
Stroke (mm)		

Retracted Length
$(\mathbf{m m})$

Front Attachment
 (mm)

Rear Attachment (mm)

$1=\operatorname{Iron}$ CNC, clevis U , slot 8.2 , depth 17.0 , hole 10.2, T bushing
2 = Iron CNC, clevis U , slot 8.2 , depth 17.0 , hole 12.2
$6=$ Aluminum casting, clevis U, slot 8.2 , depth 17.0 , hole 10.2 (for load<8000N)

7 = Aluminum casting, clevis U, slot 8.2, depth 17.0, hole 12.2 (for load<8000N)
$\mathrm{C}=$ Aluminum casting, clevis U , slot 8.2 , depth 17.0, hole 10.2, T bushing (for load<8000N)

1 = Iron CNC, clevis U, slot 8.2, depth 17.0, hole 10.2, T bushing
2 = Iron CNC, clevis U, slot 8.2, depth 17.0, hole 12.2
$6=$ Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 10.2 (for load<8000N)

Special Functions for Spindle Sub-Assembly		$0=$ Without (standard)	2 = Standard push only	
		1 = Safety nut	3 = Standard push only + safety nut	
Functions for Limit Switches		$1=$ Two switches at full retracted/extended positions to cut current $3=$ Two switches at full retracted/extended positions to send signal		
Output Signals	$0=$ Without	1 = One Hall sensor	2 = Two Hall sensors	$4=\mathrm{POT}$
Connector	$1=$ DIN 6pin, 90° plug	$2=$ Tinned leads	$\mathrm{F}=$ DIN 6pin, 180° plug	$\mathrm{G}=$ Audio plug
Cable Length	1 = Straight, 500 mm	3 = Straight, 1000mm	$5=$ Straight, 1500mm	7 = Curly, 200 mm
	$2=$ Straight, 750 mm	4 = Straight, 1250mm	$6=$ Straight, 2000 mm	$8=$ Curly, 400 mm

TA12 - Patient Hoist Ordering Key

TA12

Voltage	$\overline{5=24 \mathrm{~V}, \text { thermal protector }}$	
$\overline{\text { Load and Speed }}$	$B=12000 \mathrm{~N}$	$G=10000 \mathrm{~N}$

Stroke
 (mm)

Retracted Length \quad See page 6
$(\mathbf{m m})$

Rear Attachment
 (mm)

$\mathrm{C}=$ Aluminum casting, clevis U , slot 8.2, depth 17.0, hole 10.2, T bushing

Front Attachment
$F=$ Aluminum casting, clevis U , slot 8.2 , depth 19.0 , hole 10.2, T bushing (for manual release)
(mm)

Direction of Rear Attachment (Counterclockwise) $\quad 1=0^{\circ}$

Color	1 = Black		2 = Grey (Pantone 428C)
IP Rating	$2=1$ P54		3 \| P666
Emergency Release Function		$5=$ Manual release	

Special Functions for Spindle Sub-Assembly		$6=$ Mechanical push onl	ety nut
Functions for Limit Switches		1 = Two switches at full	ed/extended posit
Output Signals	$0=$ Without		
Connector	$1=$ DIN 6pin, 90° plug	F = DIN 6pin, 180° plug	$\mathrm{G}=$ Audio plug
Cable Length	$1=$ Straight, 500 mm		3 = Straight, 100

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.

